
Turning Pages with Reinforcement: A Markov
Decision Process Approach to Book

Recommendations
Ori Spector

Computer Science
Stanford University

Stanford, CA
orispec@stanford.edu

Pannisy Zhao
Computer Science
Stanford University

Stanford, CA
pannisy@stanford.edu

Abstract—This paper presents a Markov Decision Process
(MDP) modeling approach to address the sequential decision-
making problem of recommending books to users based on
their historical interactions. We reduce the dimensionality of
the state and action spaces through K-means clustering of users
and books, respectively. A reward function is defined based on
user interactions, capturing the quality of recommendations. We
then apply Q-learning to derive a policy that aims to maximize
cumulative rewards. Experiments demonstrate the effectiveness
of the proposed method in aligning recommendations with user
preferences, outperforming a random policy baseline.

Index Terms—Book Recommendation Systems, Markov Deci-
sion Processes, Reinforcement Learning, Q-Learning, K-Means
Clustering, User Interaction Data

I. INTRODUCTION

In the era of digital information overload, readers are faced
with an overwhelming number of book choices on platforms
like Goodreads and Amazon Kindle. Personalized recom-
mendation systems are essential for helping users discover
books that align with their interests, enhancing their reading
experience.

Traditional recommendation methods, such as collaborative
filtering and content-based filtering, often fall short in cap-
turing the dynamic and sequential nature of user preferences.
Reinforcement learning (RL) offers a promising avenue by
modeling the recommendation task as a sequential decision-
making problem, where the system learns to adapt its recom-
mendations based on user feedback over time.

This paper proposes an RL-based approach using Markov
Decision Processes (MDPs) to model the book recommenda-
tion problem. By leveraging K-means clustering, we reduce the
complexity of the state and action spaces, making the problem
computationally tractable. We define a reward function that
reflects user satisfaction derived from interaction data and
apply Q-learning to learn an optimal recommendation policy.

II. LITERATURE REVIEW

There are several relevant research papers that explore the
use of Q-learning, MDPs, and related RL techniques for book
recommendation systems.

A. MDP-Based Recommender Systems

Foundation work from Shani et al. [1] proposed using MDPs
to model the recommendation process as a sequential decision
problem rather than a static prediction task. Their approach
offers two main benefits: 1) It considers the long-term effects
of each recommendation and 2) It accounts for the expected
value of recommendations.

The authors developed an MDP model initialized with
a predictive model and deployed it on a commercial site,
demonstrating its practical viability.

B. Q-Learning for Book Recommendation

There has been research that applied Q-learning and Deep
Q-learning to build a movie recommendation system using
the Netflix Prize dataset [2]. While not specifically for books,
their approach could be adapted for book recommendation. By
leveraging reinforcement learning to capture the dynamic na-
ture of user preferences, they were able to address limitations
of traditional recommendation systems like data sparsity and
cold start. Moreover, they demonstrated that quality recom-
mendations can be learned from user-item interaction data.

C. RL for Personalized Recommendations

Several papers explore RL approaches for personalized
recommendations that could be applied to books. For instance,
Zhao et al. [4] developed a pairwise deep reinforcement learn-
ing method to incorporate negative feedback in recommenda-
tions. Additionally, Wang et al. [3] proposed a clustering-based
hierarchical reinforcement learning approach to handle data
sparsity in digital library book recommendations.

D. Book Recommendation Systems

Furthermore, Du et al. [5] designed a collaborative filter-
ing algorithm that addresses data sparseness and cold start
problems by improving similarity calculations and data filling
methods. Their approach incorporates user common rating
weights into similarity calculations and employs a hierarchical
clustering method based on user attributes and Euclidean

distance for data filling. The algorithm also utilizes the Slope-
One algorithm with weighted degrees to determine final filling
values, resulting in improved recommendation accuracy when
tested on the Book-Crossing dataset.

In summary, these papers demonstrate the potential of Q-
learning, MDPs, and other RL techniques to improve book
recommendation systems by capturing sequential decision-
making, addressing common challenges, and optimizing for
long-term user satisfaction. The field is active, with ongoing
research exploring novel algorithms and hybrid approaches.

III. PROBLEM FORMULATION

We model the book recommendation problem as a
Markov Decision Process (MDP), represented by the tuple
(S,A, T,R, γ), where:

• S is the set of possible user states, represented by user
clusters obtained through K-means clustering of user
features.

• A is the set of possible actions, corresponding to book
clusters obtained by clustering book features.

• T (s′|s, a) is the probability of transitioning from state s
to s′ after taking action a. In our simplified model, we
assume T (s′|s, a) = 1 if s′ = s and 0 otherwise, as user
states are considered static during interactions.

• R(s, a) is a deterministic function that assigns a reward
based on the user’s interaction with the recommended
book.

• γ is a discount factor between 0 and 1 that determines
the importance of future rewards.

The MDP for the book recommendation problem is formulated
below.

A. State Space

The state space S represents the different types of users in
our system. To manage the complexity of modeling individual
user preferences, we reduce the dimensionality of the state
space by clustering users based on their features. We apply
K-means clustering to user feature vectors, which include:

• Average Rating Given: The mean of the ratings a user
has assigned to books.

• Number of Books Read: Total count of books the user
has read.

• Preferred Genres: Encoded as a sparse vector indicating
the genres the user frequently reads.

Each cluster s ∈ S groups users with similar reading be-
haviors, effectively summarizing their preferences. Mathemat-
ically the state space is S = {s1, s2, ..., sn} where n is the
number of user clusters.

B. Action Space

The action space A consists of possible recommendations
we can make, represented by clusters of books. We cluster
books based on their features to reduce the action space’s
dimensionality. Book features include:

• Average Rating: The average rating the book has re-
ceived.

• Number of Pages: Length of the book.
• Publication Year: When the book was published.
• Genres: Encoded as a sparse vector similar to user genres.

Each action a ∈ A corresponds to recommending a book from
a specific book cluster. Formally, the action space is A =
{a1, a2, ..., am} where m is the number of book clusters.

C. Reward Function

The reward function R(s, a) quantifies the quality of a
recommendation based on user interaction. It is designed
to encourage recommendations that the user reads and rates
highly. The reward is assigned as follows:

R(s, a) =

−1, if book is not read
1, if book is read but not rated
5, if book is read and rated 1-2 stars
10 + rating, if book is read and rated 3-5 stars
0, otherwise

The reward function captures user satisfaction, providing
higher rewards for recommendations that lead to positive
interactions.

D. Objective Function

Our goal is to find an optimal policy π∗ that maximizes the
expected cumulative reward:

π∗ = argmax
π

Eπ

[∞∑
t=0

γt R(st, at)

]

where st is the state at time t, at = π(st) is the action taken
in state st following policy π, and γ ∈ [0, 1] is the discount
factor that determines the importance of future rewards.

By solving this optimization problem, we aim to derive a
policy that consistently recommends books aligning with user
preferences, thereby enhancing user satisfaction.

IV. APPROACH

A. Data Preprocessing

We utilized two primary datasets from Goodreads [6] [7].
First, a books dataset that contains metadata for books, includ-
ing book ID, title, authors, average rating, number of pages,
publication year, and popular shelves (genres). The second
dataset includes user interactions with books, such as user ID,
book ID, whether the book was read (is read), and the user’s
rating.

Furthermore, we utilized feature extraction. For each book,
we extracted numerical features (average rating, number of
pages, publication year) and encoded genres using a sparse
binary matrix. Genres were mapped using a genre index built
from the most common genres in the dataset. For each user, we
calculated the average rating given, the number of books read,
and aggregated genres from the books they have interacted
with.

B. Clustering
We applied K-means clustering on feature vectors to group

users into n clusters (states). Each cluster represents a distinct
user profile. We also similarly applied K-means clustering on
book feature vectors to group books into m clusters (actions).
Each cluster groups similar books.

C. State-Action-Reward Tuples
Using the interactions data, we constructed state-action-

reward tuples (s, a,R(s, a)) for training state s, the cluster
to which the user belongs, action a, the cluster to which the
interacted book belongs, and reward R(s, a), calculated based
on the user’s interaction with the book, as defined in the reward
function.

D. Q-Learning Algorithm
We employed Q-learning, an off-policy temporal-difference

control algorithm, to learn optimal policy. First, we initialized
the Q-table Q(s, a) with zeros for all state-action pairs. Then,
the Q-value updates are performed using the Bellman equation:

Q(s, a)←− Q(s, a) + α[R(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)]

Since s′ = s in our model, the update simplifies to:

Q(s, a)←− Q(s, a) + α[R(s, a) + γmax
a′

Q(s, a′)−Q(s, a)]

where α is the learning rate and γ is the discount factor.
A ϵ-greedy policy is used for action selection during train-

ing:

π(s) =

{
random action, with probability ϵ

argmaxa Q(s, a), with probability 1− ϵ

E. Recommendation Process
For a given user, we identify the user’s state cluster s, select

an action a using the learned policy π(s), and recommend a
random book from the selected book cluster corresponding to
action a.

F. Evaluation Methodology
We evaluated the recommendations through an alignment

check, determining if the recommended book’s genre aligns
with the user’s preferred genres, and a success metric. A
recommendation is considered successful if there is significant
genre overlap. We compared the learned policy with a random
policy that selects actions uniformly at random.

V. EXPERIMENTS

A. Experimental Setup
Due to compute constraints, we decided to focus on a

specific genre subset ’Children’s Books’ instead of the entire
dataset. Therefore, we conducted experiments using 124, 082
books and ≈ 25, 000 users in the subset from our Goodreads
dataset. The experiments were designed to evaluate the ef-
fectiveness of our MDP-based recommendation system under
different clustering configurations and training parameters.
We maintained consistent hyperparameters across experiments
with γ = 0.9, α = 0.1, and ϵ = 0.1.

B. Clustering Configurations

We evaluated three different clustering configurations to
understand the impact of state-action space granularity:

• Configuration 1: 500 book clusters, 50 user clusters
• Configuration 2: 200 book clusters, 25 user clusters
• Configuration 3: 75 book clusters, 5 user clusters

For each configuration, we trained the Q-learning agent for
1,000 epochs. Additionally, we conducted an extended training
experiment with 5,000 epochs on the best-performing config-
uration.

C. Evaluation

We evaluated both the learned policy and random policy
using a systematic approach:

• Test Set: 3,000 randomly selected users from the dataset
• Alignment Check: For each user, we:

– Extract user’s preferred genres from historical inter-
actions

– Generate recommendation using either learned or
random policy

– Compare recommended book’s genres with user’s
preferred genres

– Consider recommendation successful if significant
genre overlap exists

• Policies Compared:

– Learned Policy: Uses Q-learning to select book clus-
ters based on user state

– Random Policy: Randomly selects book clusters with
uniform probability

D. Example Recommendations

To illustrate the evaluation process, we present two repre-
sentative cases:

User ID: a50c149f424cbc8443cd5ee41e6ce950
• Top Genres: fairy-tales, fantasy, magic, adventure,

classics
• Recommended Book: ”The Faraway Tree Collec-

tion”
• Book Genres: fantasy, classics, children, adven-

ture, magic
• Result: Strong alignment between user prefer-

ences and recommendation

This case demonstrates successful genre alignment, with
multiple overlapping genres (fantasy, classics, adventure,
magic) between user preferences and the recommended book.

User ID: d594a2c0d47f7eca636801b5c1349850
• Top Genres: love, romance, British, vampire, re-

alistic
• Recommended Book: ”Harry Potter and the Pris-

oner of Azkaban”
• Book Genres: sci-fi, fiction, adventure, British,

coming-of-age
• Result: Limited alignment with only ”British” as

common genre

This case illustrates a misalignment where the system
recommended a fantasy book to a user who primarily reads
romance and realistic fiction.

VI. RESULTS AND ANALYSIS

A. Clustering Configuration Performance

Config 1
(500/50)

Config 2
(200/25)

Config 3
(75/5)

0

20

40

60

80

100
92.13 92.33

88.65

52.93 50.63 51.43

Clustering Configuration

A
lig

nm
en

t
R

at
io

(%
)

Learned Policy
Random Policy

Fig. 1. Comparison of alignment ratios across different clustering configura-
tions for 3000 random users

B. Performance Analysis

1) Clustering Configuration Performance: As shown in
Figure 1, our experiments with different clustering configu-
rations revealed:

• Configuration 1 (500/50): 92.13% alignment with learned
policy vs 52.93% random

• Configuration 2 (200/25): 92.33% alignment with learned
policy vs 50.63% random

• Configuration 3 (75/5): 88.65% alignment with learned
policy vs 51.43% random
Note that we decided to use higher clusters number for
books due to the amount of the data compared to number
of users.

2) Policy Comparison: The learned policy consistently
outperformed the random baseline by approximately 40 per-
centage points across all configurations. This substantial im-
provement demonstrates that:

• The Q-learning algorithm effectively captures user pref-
erences

• The MDP framework successfully models the sequential
nature of recommendations

• The clustering approach maintains sufficient information
while reducing dimensionality

C. Key Findings

1) Optimal Clustering Configuration: Configuration 2 (200
book clusters, 25 user clusters) achieved the best performance
with a 92.33% alignment ratio, while maintaining reasonable
computational efficiency with a training time of 173 seconds.
This suggests that this configuration provides an optimal
balance between model complexity and performance.

2) Impact of Cluster Granularity: We observed that:
• Fine-grained clustering (Configuration 1) achieved sim-

ilar performance (92.13%) but required more computa-
tional resources

• Coarse clustering (Configuration 3) showed degraded
performance (88.65%), though with faster training time

• The medium granularity (Configuration 2) provided the
best trade-off between performance and computational
efficiency

• Random policies performed better than expected due to
sub-genres being relatively popular among the dataset.

3) Extended Training Analysis: When extending the train-
ing epochs to 5,000 for Configuration 2, we observed an
improvement in alignment ratio to 94.30%, suggesting that
additional training can yield marginal improvements in rec-
ommendation quality.

VII. CONCLUSION

The experimental results demonstrate that our MDP-based
recommendation system effectively learns user preferences
and significantly outperforms random recommendations. The
optimal configuration with 200 book clusters and 25 user
clusters provides a good balance between model complexity
and performance, achieving over 94% alignment (when trained
for 5k epochs) with user preferences while maintaining rea-
sonable computational efficiency. However, there are several
limitations present in our work:

• Our experiments were limited to the Children’s Books
subset due to computational constraints, potentially lim-
iting generalizability to other genres

• Static State Assumption: The current model assumes user
preferences remain static, which may not reflect real-
world dynamics of evolving reading tastes

• While clustering reduces complexity, it may oversimplify
individual user preferences and book characteristics

• The model doesn’t fully utilize the temporal sequence of
user interactions, which could provide valuable context
for recommendations

Future work could address these limitations through:
• Expanding the model to handle the full dataset across all

genres
• Incorporating dynamic state transitions to capture evolv-

ing user preferences
• Exploring more sophisticated clustering techniques or

alternative dimensionality reduction methods
• Implementing sequence modeling to leverage temporal

patterns in user interactions
• Investigating hybrid approaches that combine MDP-based

recommendations with traditional collaborative filtering
methods

Despite these limitations, our results demonstrate the potential
of MDP-based approaches in book recommendation systems,
providing a foundation for future research in this direction.

TEAM COLLABORATION

Our collaborative project benefited from the commitment
and efforts of each team member, ensuring its success. Pannisy
contributed fully in alignment with her 3-unit enrollment. Ori,
enrolled for 4 units, dedicated an additional 30 hours to the
project. We are pleased with the strong team dynamics and
the productive outcomes achieved together.

REFERENCES

[1] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-Based Recom-
mender System,” J. Mach. Learn. Res., vol. 6, pp. 1265–1295, December
2005.

[2] M. Rezaei, “Reinforcement Learning based Recommender System using
Q-Learning and Deep Q-Learning,” East Carolina University, Jul. 2022.
[Online]. Available: http://hdl.handle.net/10342/11122

[3] X. Wang, Y. Wang, L. Guo, L. Xu, B. Gao, F. Liu, and W. Li,
“Exploring Clustering-Based Reinforcement Learning for Personalized
Book Recommendation in Digital Library,” Information, vol. 12, no. 5,
pp. 198, 2021.

[4] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep
reinforcement learning for page-wise recommendations,” in Proceedings
of the 12th ACM Conference on Recommender Systems, pp. 95–103,
September 2018.

[5] Y. Du, L. Peng, S. Dou, X. Su, and X. Ren, “Research on Personalized
Book Recommendation Based on Improved Similarity Calculation and
Data Filling Collaborative Filtering Algorithm,” Comput Intell Neu-
rosci., vol. 2022, pp. 1900209, September 2022.

[6] M. Wan, J. McAuley, “Item Recommendation on Monotonic Behavior
Chains,” in Proceedings of the 12th ACM Conference on Recommender
Systems (RecSys’18), pp. 86–94, October 2018.

[7] M. Wan, R. Misra, N. Nakashole, J. McAuley, “Fine-Grained Spoiler
Detection from Large-Scale Review Corpora,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics
(ACL’19), pp. 2605–2610, July 2019.

