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Abstract—I aim to improve on the results from the simulated
tabletop manipulation task experiments conducted by Liang
et al’s in their foundational paper Code as Policies (CaP).
Specifically, their tabletop manipulation experiments garnered
high success rates for seen attributes and instructions in their
few-shot prompting approach, but fell short (failing 25+%) in
multiple scenarios where policies were generated using unseen
attributes and/or instructions in the user’s prompt. To enhance
the generalization of their method, my approach is motivated
by using multiple LLM based agents to complete high-order
reasoning using chain of thought (CoT). Prior research has
shown that multi-agent systems can improve code generation and
other high-order reasoning problems (e.g. mathematics, debating)
through the use of state-of-the-art CoT frameworks. Additionally,
it has been showed that Embodied Chain-of-Thought (ECoT)
reasoning improves policy generalization. In this paper, I create
a up to date (simplified) baseline adapted from CaP’s original
code using gpt-3.5-turbo and build a multi-agent reasoning model
using OpenAI’s swarm library. Overall, this paper serves as
a proof of concept for generating code policies using higher-
order reasoning systems, guiding future research that can more
sufficiently show final results.

I. INTRODUCTION

Robotic manipulation involves interpreting and executing
commands within dynamic environments. Traditional meth-
ods often struggle with generalizing to new tasks without
extensive retraining or data collection. The ”Code as Policies”
(CaP) framework from Google Robotics by Liang et al [11]
demonstrates the potential of large language models (LLMs) to
synthesize robot policy code from natural language commands,
allowing robots to leverage spatial-geometric reasoning and
behavioral commonsense. However, these systems rely on
predefined logic structures, in the form of few-shot prompting,
to simulate basic reasoning for policy generation. This few-
shot approach demonstrates high success rates with tabletop
manipulation tasks in situations where attributes (e.g. object
color, location, direction, distance, count) or instructions (e.g.
Pick up the <block> and place it on <bowl>) are ’seen’
or explicitly written in prompts fed into the code generation
pipeline. For instance, in the results from the simulated table
top experiments done in CaP the success rate was as high as
100% for tasks with Seen Attributes and Seen Instructions1.
On the other hand, for user prompts containing Unseen
Attributes and Unseen Instructions there were drastically
worse results including 38% success on the following task.

1To view the detailed results from CaP see Appendix 6.

Pick up the <object> and place it <magnitude> to the
<direction> of the <bowl>

The findings suggest that while LLMs excel at imple-
menting policies when given clear contextual information,
they struggle to create appropriate policies when context is
missing from their input prompts. Consider how a human
would approach a complex task - such as positioning blocks
at specific locations on a table or creating stacks in various
orientations. They would likely pause to analyze the situation
first, distinguishing between different objects like blocks and
bowls, rather than relying on automatic responses. Similarly,
we aim to develop robotic systems that can balance two capa-
bilities: executing well-trained control sequences and carefully
analyzing new situations before converting them into action-
able code policies. This analytical process should encompass
several steps: recognizing and pinpointing relevant objects,
developing a strategic approach to the task, and effectively
translating both subtasks and environmental observations into
more precise code execution.

Thus, my goal is to present a method where multi-agent
CoT helps breakdown tasks in order to reason more deeply
for unseen scenarios. While, LLMs perform well when given
context, as seen by the strong results for manipulations tasks
in ”seen” cases feeding more context is not always a solution.
Research [9] has shown that long context does not always
yield better results, meaning that few-shot approaches are
not scalable for multiple reasons. Therefore, deeper reasoning
strategies with known context might be a better solution for
dealing with cases where there is deviance from the prompt
(causing hallucination and failing tasks). For example, here is
a seen instruction defining positions functions for the top left
corner and bottom side from CaP.

# the top right corner.
top_left_pos_norm = [0, 1]
top_left_pos = denormalize_xy(top_left_pos_norm)
ret_val = top_left_pos
# the bottom side.
bottom_pos_norm = [0.5, 0]
bottom_pos = denormalize_xy(bottom_pos_norm)

When tasked with moving a block to the bottom side, the
generated policy will be successful. However, there can be
some generalization mistakes that occur when trying to move
a block to the top right corner. This is a rather trivial case, but
when one starts stacking unknowns factors, such as colors,

https://github.com/google-research/google-research/blob/master/code_as_policies/Interactive_Demo.ipynb


directions, and magnitudes all in one prompt, the few-shot
system is not as robust. Thus, with smart multi-step reasoning
system, these large unknown scenarios can be handled better
by breaking down similar scenarios with known attributes/in-
structions in order to code yet-to-be-generated functions that
can compute moving a block ”top right” or ”further” without
needed this explicit knowledge in the prompt.

II. PREVIOUS INVESTIGATIONS

The intersection of language models, robotics, and reason-
ing frameworks has seen significant developments in recent
years. My work tries to build upon these advances while
addressing the crucial challenge of improving generalization
in code-based policies. I organize my discussion around three
main themes: code as policies, chain-of-thought reasoning, and
multi-agent frameworks.

A. Code Generation and Robot Control

Code as Policies (CaP) [11] introduced a novel paradigm for
robot control by directly generating executable code through
large language models. This approach differs fundamentally
from traditional methods that rely on semantic parsing [8]
[10][14] or predefined skills [13] [12]. While CaP demon-
strated impressive capabilities in generating precise control
policies, its generalization to unseen attributes and instructions
remains a challenge, particularly in complex manipulation
tasks. Prior works in language-based robot control have pri-
marily focused on high-level interpretation [6][1][5] or plan-
ning approaches. These methods typically decompose tasks
into discrete steps but often assume the existence of pre-trained
skills for execution. In contrast, CaP generates complete policy
code that includes both high-level logic and low-level control
primitives, eliminating the need for extensive pre-training of
specific skills.

B. Chain-of-Thought Reasoning

Recent advances in chain-of-thought (CoT) reasoning have
shown remarkable improvements in various complex tasks.
The Embodied Chain-of-Thought (ECoT) framework from
Zawalski et al [17] has demonstrated that incorporating mul-
tiple steps of reasoning about plans, sub-tasks, and visually
grounded features can significantly enhance policy perfor-
mance. This approach achieved a 28% improvement in success
rates across challenging generalization tasks without additional
robot training data. Traditional CoT approaches [16] focus pri-
marily on simple language-only reasoning. However, robotics
applications require grounding this reasoning in physical states
and observations. The integration of embodied reasoning with
code generation presents a promising direction for improving
policy generalization, as demonstrated by recent works[2][15].

C. Multi-Agent Frameworks

Multi-agent systems have shown promise for enhancing rea-
soning capabilities. AgentCoder [4] demonstrated that collabo-
rative code generation through multiple specialized agents can
significantly improve code quality and testing effectiveness.

Their approach achieved 96.3% pass rates on standard bench-
marks, substantially outperforming single-agent approaches.
The Chain of Agents (CoA) framework [18] has shown
particular promise in handling long-context tasks through
sequential agent collaboration. This approach is especially
relevant for complex robotics tasks that require processing and
reasoning about extensive contextual information. Recent work
by Hegazy [3] showed that diversity in multi-agent systems
can lead to stronger reasoning capabilities. Their findings
show that combining different model architectures in a debate
framework can outperform even the most advanced single
models, achieving state-of-the-art performance on complex
reasoning tasks.

D. Research Gaps and Future Directions

Despite these advances, several crucial challenges remain:
• The integration of multi-agent reasoning frameworks with

code generation for robotics has not been fully explored
especially using vision language models.

• The balance between high-level reasoning and low-level
control generation in multi-agent systems requires further
investigation.

III. METHODS & EXPERIMENTS

This section outlines my designed multi-agent reasoning
system and the experiments designed to evaluate the proposed
system’s performance. My work hopes to combine some of
the existing research frameworks highlighted in the previous
section including using multi-agent systems with CoT reason-
ing to enhance the generalization capabilities of code-based
policies. This approach hypothesizes improvements of both
the robustness and interoperability of generated robot control
policies while maintaining the flexibility and expressiveness
of the original CaP framework.

A. Methods

My system is designed to compartmentalize complex tasks
into distinct reasoning stages in order to execute new policies
specifically to help generalize language model programs for
table top manipulation tasks.

1) Mulit-Agent Overview: The system consists of five
specialized agents working in sequence to process natural
language commands into executable robot policies: a UI
Agent, Object Parser Agent, Position Parser Agent, Function
Generator Agent, and Executor Agent.

The UI Agent, serves as the initial interface for process-
ing user commands performing preliminary parsing of task
requirements and determines which specialized agent should
handle the next stage of processing. The Object Parser Agent
identifies and categorizes objects mentioned in commands,
handles disambiguation of object references, maps natural
language object descriptions to specific simulation objects,
and maintains awareness of available objects in the environ-
ment. 2. Moreover, the Position Parser Agent processes spatial

2A simplified implementation of this agent is given in the Appendix A



relationships and positioning requirements, handles relative
positioning (e.g., ”to the left of”, ”behind”), translates natural
language spatial descriptions into coordinate frames, and val-
idates spatial feasibility of requested positions. Additionally,
the Function Generator Agent, creates helper functions needed
for complex task execution, breaks down multi-step tasks into
executable sub-components, generates code for geometric cal-
culations and path planning and handles edge cases and error
conditions. Finally, the Executor Agent is responsible for final
code execution and robot control, monitors execution progress
and handles failures, provides feedback on task completion
status, and manages robot state and safety constraints.

2) Swarm Implementation Architecture: The multi-agent
system leverages OpenAI’s Swarm framework [7]8, which
provides a lightweight and flexible approach to agent orches-
tration. At its core, Swarm operates through two fundamental
primitives: Agents and handoffs. Each Agent is instantiated
with a distinct name, system-level instructions that define its
role and behavior, a list of available functions or tools it can
utilize, and a specified language model (in this case, GPT-3.5-
turbo). This structure allows for clear separation of concerns
while maintaining a unified interface for agent communication
and control.

UI Agent Object Parser Position Parser

Function Generator Executor

Context Variables Spatial DataUser Command

Robot Actions

Fig. 1: Multi-Agent System Architecture using Swarm Framework.
Solid arrows represent direct agent handoffs, while dashed arrows
show context variable flow. Each agent specializes in a specific aspect
of task processing, from initial command interpretation to final robot
execution.

The system’s communication flow is orchestrated through
a custom Result dataclass that encapsulates three key com-
ponents: a return value from function execution, a reference
to the next agent that should handle the task, and a dictio-
nary of context variables that maintains shared state across
the agent network. This design enables smooth transitions
between agents while preserving critical context and state
information throughout the execution pipeline. State manage-
ment is achieved through a comprehensive context variables
system that maintains and updates task-relevant information
throughout the execution cycle. These variables include the
original command, available objects in the environment, parsed

object references, computed positions, and generated helper
functions. As each agent processes the task, it can both access
and modify these variables, ensuring that subsequent agents
have access to the accumulated context and reasoning from
previous steps.

Agent transitions are implemented through explicit handoff
functions that package the current state and designate the
next appropriate agent in the pipeline. For example, when the
UI Agent completes its initial parsing, it triggers a handoff
to the Object Parser Agent by returning a Result object
containing the updated context and the next agent reference.
This explicit handoff system ensures clear control flow and
maintains traceability throughout the execution process.

This architecture enables robust task decomposition and
specialized processing while maintaining coherent state man-
agement and clear execution flow. The combination of explicit
agent roles, structured handoffs, and shared context creates a
system that can effectively reason about and execute complex
robotic manipulation tasks.

3) Reasoning Framework Benefits: This multi-agent archi-
tecture offers several advantages over single-agent approaches
including, task specialized reasoning, improved generalization,
and better contextual understanding.

Each agent focuses on a specific aspect of the task, allowing
for deeper domain expertise in each component, which reduces
the complexity of individual agent responsibilities. Further-
more, there is potential for better handling of unseen attributes
through decomposition and explicit reasoning about spatial
relationships. Also, by maintaining state between processing
stages there is accumulated context from previous steps lead-
ing to a more robust knowledge pipeline.

Overall, the goal was to mirror human problem-solving ap-
proaches - breaking down complex tasks into manageable sub-
problems while maintaining overall context and goals. While,
I’ve only done preliminary research into this methodology
it seems like a promising direction to try and handle novel
situations by applying specialized reasoning at each stage
rather than relying solely on end-to-end pattern matching.

B. Experiments

Simulated Tabletop Manipulation
To reproduce results from the original CaP paper I adapted
the code provided in their Tabletop Manipulation Interactive
Demo. This code uses a PyBullet-based environment that
simulates a UR5e robot with a 2-finger gripper to perform
complex manipulation tasks. These include:

• Spatial Reasoning: Tasks like placing objects relative to
each other (e.g., ”to the left of the red block”).

• Sequential Actions: Multi-step commands such as ”stack
blocks on the bottom-right corner”.

• Contextual Commands: Handling instructions that depend
on previous states, like ”undo that”.

However, rapid model innovation has lead to OpenAI dep-
recating the exact model used in the original paper. Thus, I
updated their code to support OpenAI’s newer models and
API schemas specifically around Codex and Edit which have

https://github.com/google-research/google-research/blob/master/code_as_policies/Interactive_Demo.ipynb
https://github.com/google-research/google-research/blob/master/code_as_policies/Interactive_Demo.ipynb


become deprecated in favor of using general intelligence
models. Specifically I made two major changes 3:

• The chat completion model uses gpt-3.5-turbo instead of
code-davinci-002

• The code completion and editing to use gpt-3.5-turbo
instead of the Edit API and Codex models

I performed a simple new baseline evaluation on a few of
the largest fail cases in order to ensure fair comparison to
the multi-agent system. The following failcases were used to
establish the baseline to evaluate my new approach:

1. Seen Attributes, Seen Instructions
- Pick up the block to the <direction> of the <bowl>
and place it on the <corner/side>

2. Unseen Attributes, Seen Instructions
- Pick up the block to the <direction> of the <bowl>
and place it on the <corner/side>
- Pick up the <nth> block from the <direction> and
place it on the <corner/side>

3. Unseen Attributes, Unseen Instructions 4

- Pick up the <object> and place it <magnitude>
to the <direction> of the <bowl>
- Pick up the <object> and place it in the corner
<distance> to the <bowl>
- Put the blocks in the bowls with mismatched colors

Specifically, failcases – cases where the original baseline in
CaP failed at least 25% of the time – across three categories
were my focus. To see a full list of the attributes and
instructions (seen and unseen) view section A in the appendix.

The multi-agent system ran with the same model (gpt-3.5-
turbo) on the same set of tasks to ensure fairness. Also, I tested
the baseline using OpenAI’s state-of-the-art gpt-4o to test if
a larger model by itself could increase success rates without
additional reasoning scaffolding.

IV. PRELIMINARY RESULTS

A. Model Comparison

Notably the results for the new model baselines and multi-
agent methods are preliminary and not extensive compared to
any of the results detailed in CaP. Due to limited time and
monetary resources only 15 samples were run on each fail
case, thus, this serves more as a directional proof of concept
that further research can explore and evaluate thoroughly in
order to show more meaningful results.

The first notable result, is that a larger LLM model with
better code generation capabilities out of the box improves the
original results of CaP in every fail case category. Therefore,
gpt-4o yielded higher success rates tham gpt-3.5-turbo which
beat code-davinci-002. The multi-agent scaffolding seems to
be on par or slightly better than pure gpt-3.5-turbo 5. This

3The API now uses chat completions schema instead of completions create
pipeline. Additionally, I used updated version numbers and prompt messaging
frameworks supported by the new models using defined roles. There was
minimal system prompt tweaks for the baseline.

4The largest amount of fail cases and worst success rates lie in this category.
5No results collected for multi-agent with gpt-4o due to time constraints

and errors running the code. Future work should explore this avenue.

Fig. 2: Success rate (%) across different failcase scenarios

sheds light on the directionality that multi-agent CoT frame-
works can be helpful in generalizing robotic manipulation
tasks, but that larger LLMs play bigger factors in overall
success.

Fig. 3: Successful Attempt

Fig. 4: Unsuccessful Attempt

Fig. 5: Placing blocks in mismatched colored bowls

B. Limitations

While this paper shows preliminary directional results, it
is by no means extensive enough to yield significant results.
Each metric needs to be tested on at least ≈ 30k simulated
samples as done in CaP. This requires more compute, funding,
and time. Additionally, experimenting using a variety of state-
of-the-art code models and different agent architectures is a
important future direction to explore. Finally, the testing was
done using the simulated environment given in the CaP paper,
which is constrained to set of tasks with certain instructions
and attributes. Thus, it is a relatively contained environment
and might not generalize to other situations which are more
noisy or dynamic. Furthermore, there is still a reliance on few-
shot prompting, necessitating knowledge of a given environ-
ment. Ultimately, there are limitations in this current approach
that needs to be worked on to yield considerable results.
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APPENDIX

Fig. 6: Original Detailed Results from Code as Policies
Simulated Tabletop Experiments



Detailed Breakdown of Attributes and Instructions
Seen Instructions.

1) Pick up the <block1> and place it on the
<block2>
2) Stack all the blocks
3) Put all the blocks on the <corner/side>
4) Put the blocks in the <bowl>
5) Put all the blocks in the bowls with matching colors
6) Pick up the block to the <direction> of the
<bowl> and place it on the <corner/side>
7) Pick up the block <distance> to the <bowl> and
place it on the <corner/side>
8) Pick up the <nth> block from the <direction>
and place it on the <corner/side>

Unseen Instructions.
1) Put all the blocks in different corners
2) Put the blocks in the bowls with mismatched colors
3) Stack all the blocks on the <corner/side>
4) Pick up the <block1> and place it <magnitude>
to the <direction> of the <bowl>
5) Pick up the <block1> and place it in the corner
<distance> to the <bowl>
6) Put all the blocks in a <line> line

Seen Attributes.
1) <block>: blue block, red block, green block, orange
block, yellow block
2) <bowl>: blue bowl, red bowl, green bowl, orange
bowl, yellow bowl
3) <corner/side>: left side, top left corner, top side,
top right corner
4) <direction>: top, left
5) <distance>: closest
6) <magnitude>: a little
7) <nth>: first, second
8) <line>: vertical, horizontal

Unseen Attributes.
1) <block>: pink block, cyan block, brown block, gray
block, purple block
2) <bowl>: pink bowl, cyan bowl, brown bowl, gray
bowl, purple bowl
3) <corner/side>: bottom right corner, bottom side,
bottom left corner
4) <direction>: bottom, right
5) <distance>: farthest
6) <magnitude>: a lot
7) <nth>: third, fourth
8) <line>: diagonal

.
.
.

# Example of Object Parser Agent
self.object_parser_agent = Agent(
name = "ObjectParser",
instructions = prompts[’prompt_parse_obj_name’]
[’prompt_text’][system],
functions = [self.transfer_to_position_parser,
self.parse_objects],
model="gpt-3.5-turbo"
)

Parsing Agent System Prompt
You are an agent specialized in Object Parssing for code
generation used for a robotic simulation that handles:
- Object identification by properties (color, size, type,
position)
- Spatial relationships between objects
- Geometric patterns and arrangements
- Relative positions and distances

Only output the exact code needed - no explanations
or markdown. Use the examples provided as parsing
templates but generalize to handle variations in:
- Object descriptions and references
- Position specifications
- Spatial relationships
- Pattern formations



Fig. 7: Embodied Chain-of-Thought Reasoning (ECoT)

Fig. 8: Swarm Simple Agent Example



Fail Cases Original CaP Baseline (gpt-3.5-turbo) Baseline gpt-4o Multi-Agent
Seen Attributes, Seen Instructions
Pick up the block to the <direction> of the <bowl>
and place it on the <corner/side> 72% 80% 93.3% 80%
Unseen Attributes, Seen Instructions
Pick up the block to the <direction> of the <bowl>
and place it on the <corner/side> 60% 60% 86.6% 73.3%
Pick up the <nth> block from the <direction>
and place it on the <corner/side> 60% 66.6% 93.3% 80%
Unseen Attributes, Unseen Instructions
Pick up the <object> and place it <magnitude>
to the <direction> of the <bowl> 38% 46.6% 80% 60%
Pick up the <object> and place it in the corner
<distance> to the <bowl> 58% 60% 86.6% 66.6%
Put the blocks in the bowls with mismatched colors 60% 66.6% 86.6% 73.3%

TABLE I: Detailed simulation tabletop manipulation success
rate (%) across different task scenarios
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