An Exploration of ResNet Fine-tuning for Fitness Pose Classification

Nick Walker
Department of Computer Science
Stanford University
nhwalkl3@stanford.edu

Abstract

In the rapidly growing domain of remote fitness, the need
for accurate pose recognition systems is paramount. How-
ever, current pose classification models often fall short in
realistic fitness scenarios. This study addresses this chal-
lenge by leveraging the InfiniteForm dataset, a rich syn-
thetic resource consisting of 60,000 images covering 15 di-
verse fitness pose categories, with variations in lighting,
camera angles, and occlusions. Qur research introduces
a novel methodology combining pose estimation techniques
with deep learning models to accurately classify fitness ex-
ercises. Utilizing the ResNet-50 model in tandem with rel-
evant body keypoints features, we accurately classified var-
ious fitness poses. We show that fine-tuning a pre-existing
state of the art model with pose estimation features greatly
increases correct prediction of correctly labeled fitness ex-
ercises compared to a baseline pre-trained (on ImageNet)
ResNet-50 model. Lastly, we analyze the effect of adding
additional fully connected layers and ReLU activation’s to
test if this increases our best models accuracy.

1. Introduction

In this project, we aim to classify images into one of 15
different fitness pose classes based on their respective pose
categories. The input to our method is an RGB image, and
the output is the pose category of the image, represented as
an integer between 0 and 14.

This classification problem is important to solve well so
that the many opportunities that remote fitness presents can
be capitalized on. For example, remote fitness apps could
leverage the recognition of fitness poses to then provide in-
struction to users. Beyond this, our model could be used
as a part of a larger model that first recognizes what fitness
activity is being performed, and then analyzes key points
on users’ bodies to provide suggestions on pose correction.
Moreover, our use of images rather than video and a 2D-
CNN architecture lends itself well to potential deployment
on edge devices, relative to more bulky 3D-CNN counter-

Ori Spector

Department of Humanities and Sciences

Stanford University

orispec@stanford.edu

parts.

To accurately classify the various poses we employ the
ResNet-50 architecture, which we fine-tune with both linear
and non-linear classification heads. ResNet-50 is a variant
of the ResNet (Residual Network) architecture, a popular
convolutional neural network (CNN) for image classifica-
tion tasks. It was proposed by Kaiming He and colleagues
in their 2015 paper titled Deep Residual Learning for Im-
age Recognition [6]. The ”50” in ResNet-50 denotes that
the network has 50 layers deep, including convolutional
and fully connected layers. ResNet architectures, includ-
ing ResNet-50, introduced the innovative concept of “resid-
val learning” to mitigate the problem of vanishing gradi-
ents, which often occur in deep neural networks. This was
achieved through the introduction of shortcut” connections
that allow the gradients to be backpropagated to earlier lay-
ers more effectively. The residual learning framework thus
allows the training of much deeper networks than was pre-
viously possible, and these deeper networks achieve better
performance. ResNet is considered state of the art for image
classification'.

In the context of our research, the pose classification
problem, ResNet-50 can provide several benefits. First, it
allows us to leverage the powerful feature extraction capa-
bilities of a deep CNN without the need for extensive data
or computational resources for training from scratch. Sec-
ond, the depth of ResNet-50 means it can learn complex
pose features effectively. Lastly, by fine-tuning ResNet-50
on our specific task, we can adapt the powerful general fea-
tures learned on ImageNet [5] to our specific pose classi-
fication task, potentially achieving high performance with
less data and computational resources than training a model
from scratch.

1.1. Baseline

For our research, we used one core baseline: pre-trained
ResNet-50 (i.e. transfer learning without fine-tuning) with

IResNet was the Winner of ILSVRC 2015 in image classification, de-
tection, and localization, as well as Winner of MS COCO 2015 detection,
and segmentation

the final fully connected layer being replaced by a single un-
trained, randomly initialized linear layer mapping the out-
put into 15 dimensions (one for each pose class). This pro-
duced results similar to random guessing.

Equivalently, our baseline is the ResNet-50 model ap-
plied to our problem without fine-tuning. We leverage the
concept of transfer learning, wherein we use a pre-trained
ResNet-50 model, trained on the ImageNet dataset, as our
starting point. These pre-trained weights provide us with a
rich feature extractor which has learned to discern various
features from images. In this case, we use the pre-trained
model as a fixed feature extractor. The output of this model
(prior to the classification layer) serves as a high-level repre-
sentation of our images, which can then be used in conjunc-
tion with a simpler classifier (like a linear classifier). How-
ever, without any finetuning, the model can’t properly uti-
lize any of this through the linear classification head. This
baseline provides us with a sense of how our model per-
forms without any training in a situation akin to random
guessing. Thus, this baseline is crucial for our project as we
seek to create a model that learns how to classify poses (this
baseline enables us to see that it really is learning some-
thing) and explore how to effectively fine-tune ResNet-50
with relevant features and data to increase the classifier’s
accuracy on our task of exercise pose classification.

2. Related Works

In the pursuit of developing a precise and reliable model
for fitness pose classification, our work is built upon estab-
lished approaches in the field, notably the ResNet-50 ar-
chitecture [6], and innovates upon these through a combi-
nation of unique integration of keypoint data and standard
fine-tuning processes utilizing linear and non-linear classi-
fication heads with techniques like dropout [13], allowing
for enhanced accuracy in pose identification. The general
technical approach for deep learning image classification is
founded on the use of CNNs, which AlexNet [10] proved
was state-of-the-art>. Addtionally, we build off work from
Yoga Pose Classification Using Deep Learning by Shruti
Kothari [9] whose project seeks to develop an Al system
for accurate, real-time yoga pose classification and instruc-
tion. He shows the potential effectiveness of keypoints as
feature for Yoga, which we show generalizes to more gen-
eral fitness pose classification.

2.1. OpenPose

OpenPose is a real-time system for joint multi-person 2D
pose estimation, developed by Cao et al [2]. This method
uses a novel architecture, called Part Affinity Fields (PAFs),
to learn to associate body parts with individuals in the im-
age. OpenPose can estimate the pose of multiple people in

2CNN that was winner of ImageNet

an image or video, making it useful for a wide range of ap-
plications, such as activity recognition, animation, gaming,
and augmented reality.

OpenPose works by first predicting a set of 2D confi-
dence maps (also called heatmaps) for each body part (e.g.,
left elbow, right knee) and a set of 2D vector fields (the
Part Affinity Fields) which encode the degree of association
between parts. These outputs are produced by a CNN archi-
tecture and then processed by greedy inference to obtain the
final pose estimation for all people in the image. OpenPose
shows that keypoints are a useful feature in pose estimation.
Thus, we use this same intuition when adding the keypoints
feature to our image classification model.

2.2. Recurrent Pose Classification

In a paper by Stanford students Chen et al. [3], they show
the possibility for RNNs to accurately predict poses. The
paper explores the possibility of modeling pose estimation
as a sequence task using a convolutional network linked to a
recurrent one. The authors tested this hypothesis and found
that the CNN-RNN performed worse than the CNN. They
also found that adding attention did not improve the result
of the CNN-RNN. Further work is needed to expand upon
specific reasons why the model performed worse than the
baseline with additional quantitative results to test their hy-
pothesis. Overall, the paper provides insights into the chal-
lenges and potential solutions for human pose estimation
using deep learning techniques.

2.3. 3D Pose Classification

In research conducted by Mahendran et al . [| 1] they pro-
pose a novel approach to 3D pose estimation from a single
image using a CNN regression framework. The authors ar-
gue that the 3D pose space is continuous, and therefore pro-
pose to solve the pose estimation problem in a regression
framework rather than discretizing the pose space into bins
and solving a classification problem.

The proposed approach uses a suitable representation,
data augmentation, and loss function that captures the ge-
ometry of the pose space. The authors evaluate their ap-
proach on PASCAL3D+ and show that it achieves competi-
tive performance compared to state-of-the-art methods.

While their paper focuses on 3D pose estimation, it pro-
vides useful context for our project on 2D image pose clas-
sification by highlighting some of the existing approaches
in this area, especially regarding CNN-based methods that
predict 2D keypoints from an image to solve the pose clas-
sification issue.

3. Methods

Our approach to fitness pose classification involves a se-
ries of models, all of which are based on ResNet-50. We

employ transfer learning and fine-tuning techniques in our
models. In particular, we experiment with the incorporation
of pose keypoint features to potentially increase the per-
formance of our pose classification, linear and non-linear
classification heads of varying sizes (1 linear layer, 2 linear
layers with ReLLU and dropout between, and 3 linear lay-
ers with ReLU and dropout between), and freezing all of
ResNet-50’s layers vs. unfreezing the last layer of ResNet-
50.

Using keypoints (obtained from the metadata from our
dataset) to fine-tune ResNet-50, provides a feature that en-
capsulates important structural information about the ob-
jects in the images. In the case of human pose estima-
tion, keypoints can represent different joints in the body,
capturing the pose of the person in the image. By fine-
tuning ResNet-50 on these keypoints, we essentially guide
the learning process of the model towards recognizing these
important structural features. This is particularly beneficial
in tasks where the pose or arrangement of objects in the im-
age is important. For example, in our task where we need
to classify different types of fitness pose activities (pushups,
squats, etc.), the relative position for keypoints of the per-
son is a crucial piece of information. These keypoints are
integrated into our model by being concatenated to the input
to the first linear layer in the classification head, which also
consists of the output of the second to last layer of ResNet-
50 (we overwrote the last layer with our linear layer, but we
refer to this second to last layer as the last layer of ResNet-
50 because it essentially is for our purposes).

We hypothesize that integrating keypoints in the clas-
sification head, as described above, on top of the features
learned from the inputted RGB images will allow the model
to leverage structural information and yield more accurate
results for our pose classification task. As for the other
changes, we hypothesize that unfreezing the last layer will
be beneficial by allowing our model to be more robust at
training time. Finally, we hypothesize that the 3 linear lay-
ers with ReLU and dropout between will achieve the best
accuracy since it is a robust non-linear classification head
that has more parameters and more capacity to learn com-
plex relationships in the data, with dropout preventing over-
fitting.

3.1. Methods

Baseline: Pre-Trained ResNet-50 For the baseline, we
add a linear classification head to the pre-trained ResNet-
50, overwriting the last fully-connected layer of ResNet-
50. The linear classification head consists of 1 linear layer
that takes in input from ResNet-50 and maps it down to a
15-dimensional space so that class scores can be computed.
This linear layer is not trained and is randomly initialized.
This baseline is the only “model” that was not run for 10
epochs, as the rest of the models were all trained with 10

epochs.

Model 1: ResNet (Frozen) + Linear Layer: In the first
model, we freeze the weights of the pre-trained ResNet-50
and add a fully-connected linear layer as a linear classifi-
cation head that is trained on our dataset. This effectively
turns ResNet-50 into a fixed feature extractor, where the fi-
nal linear layer is used to learn how these extracted features
segment our specific classes. This is the same architecture
as our baseline, except we allow for 10 epochs of training.

Model 2: ResNet (Unfrozen Final Layer) + Linear
Layer: In the second model, we again freeze the weights
of the pre-trained ResNet-50 model, but make exception for
the final fully-connected layer of ResNet-50, which we un-
freeze. We apply the same linear classification head as in
the previous model, with the only change being the unfreez-
ing of the final layer. This could allow for more effective
fine-tuning of ResNet-50 by making our model’s training
more robust and tailored to our specific task.

Model 3: ResNet (Frozen) + Keypoints + Linear
Layer: In the third model, we incorporate pose keypoint
features into our model. We use the pre-trained ResNet-
50 as a fixed feature extractor for the images, and combine
these image features with the keypoints information in the
linear layer of the linear classification head. We propose
that the additional information from the pose keypoints may
provide useful context for the classification task and im-
prove performance. Explicitly, this builds on the same ar-
chitecture as model 1, but with the addition of the keypoints
feature.

Model 4: ResNet (Unfrozen Final Layer) + Keypoints
+ Linear Layer: In the fourth model, we allow the weights
in the final layer of ResNet-50 to be trainable while keep-
ing the rest of ResNet-50 frozen, similar to model 2. We
also concatenate the keypoints with ResNet-50’s extracted
features as an input to our still single-layer linear classifica-
tion head, similar to model 3. This potentially will allow our
model fine-tuning to be more robust for our specific task and
also take advantage of the additional pose keypoints infor-
mation. This model builds on model 2, but with the addition
of the keypoints feature.

Model 5: ResNet (Unfrozen Final Layer) + Keypoints
+ 2 Linear Layers + ReLU/Dropout: In the fifth model,
we build on top of model 4 by utilizing a non-linear clas-
sification head. This model also unfreezes ResNet-50’s
final layer and adds in keypoints. However, rather than
having a single linear layer as a linear classification head,
this model has a non-linear classification head that begins
with a linear layer mapping the concatenated keypoints and
ResNet-50 output to a 512-dimensional hidden layer. This
is then pushed through a ReLU non-linearity and dropout
with p=0.5 is applied. Finally, a linear layer maps the 512-
dimensional hidden dimension to a 15-dimensional output
space. We propose that this shift to a non-linear classifi-

cation head will allow our model to learn more complex
relationships in the data and will avoid overfitting by using
dropout as a regularizer.

Model 6: ResNet (Unfrozen Final Layer) + Keypoints
+ 3 Linear Layers + ReLU/Dropout: In the sixth model,
we build on model 5 by utilizing a non-linear classifi-
cation head, except we now add yet another linear layer
with non-linearities, while everything else remains con-
sistent. This model begins with a linear classification
head mapping the concatenated keypoints and ResNet-50
output to a 512-dimensional hidden layer. This is then
pushed through a ReLU non-linearity and then dropout with
p=0.5. Following this, the output is fed to a second lin-
ear layer which maps the 512-dimensional space down to
a 256-dimensional hidden layer. Once again, ReLU and
then dropout with p=0.5 are applied before a final linear
layer maps the 256-dimensional hidden layer to a final 15-
dimensional output layer.

3.2. Data pipeline

PoseDataset class: We define a custom PyTorch
Dataset, PoseDataset, to load the fitness pose images and
their associated labels and keypoints. The keypoints are in-
cluded as an additional feature along with the image data.
The purpose of this class is to handle the dataset of images
and corresponding labels and keypoints. It’s initialized with
the directory containing the images, a dictionary of annota-
tions corresponding to the images, and a series of image
transformations (normalized to extract ImageNet features).
In the __getitem__ method, for each image ID, it retrieves the
image, the corresponding pose category as an integer, and
the keypoints as a tensor.

3.3. Additional Shared Model Details

The architectures of our neural networks are based on
the pre-trained ResNet-50. Using PyTorch, we load a pre-
trained ResNet-50 model. This model is designed to receive
images as input and transform them through a series of con-
volutional and pooling layers, learning to extract numerous
features from the input images. Since we use the pre-trained
model, it comes with weights that have been already trained
on a large dataset (ImageNet), thus having already learned
to extract a wide range of features from images.

The training and testing datasets are created using the
PoseDataset class and the respective image directories. Dat-
aloader objects are created for each of these datasets which
will allow for batch loading of the data during training and
evaluation. We then initialize an instance of our deep learn-
ing model.

For our loss function, we applied cross-entropy loss, as
it is commonly used for multi-class classification problems
and is more precise than alternatives like hinge loss. With
respect to our optimizer, we use the Adam optimizer [&].

For our models, the optimizer updates only the parameters
of the final fully connected layer of ResNet-50 (if it is un-
frozen), as well as all other parameters in the classification
heads.

For each epoch, the model is set to training mode. On
each batch of images, targets, and associated keypoints (if
relevant), the model’s forward method is called, and the
cross-entropy loss between the model’s predictions and the
true targets is calculated. This loss is then backpropagated
through the model and the optimizer updates the model’s
parameters. The learning rate scheduler adjusts the learn-
ing rate (which starts at 0.001) at the end of every 7 epochs
with gamma=0.1 as the decay rate (PyTorch’s default). Af-
ter each epoch of training, the model is evaluated on the test
set and we keep track of our best model up to that point.
The model’s forward method is called with no gradients be-
ing calculated and the loss and accuracy on the test set are
recorded. This process is repeated for the number of epochs
specified (10). The end result is a model that is effective at
classifying fitness poses, with the training process guided
by both the image data and the additional pose keypoints.

4. Dataset and Features

We utilize the InfiniteForm dataset developed by Weitz
et al [14], an open-source synthetic collection of 60,000 im-
ages, for our pose classification task. It comprises diverse
fitness poses categorized into 15 unique categories, involv-
ing both single and multi-person scenes. This dataset is par-
ticularly suited to our task due to its inclusion of realistic
variations in lighting, camera angles, and occlusions, which
mirror real-world fitness scenarios. *

Notably, the InfiniteForm dataset exhibits minimal bias
concerning body shape and skin tone, making it an excellent
tool for developing unbiased fitness tracking applications.
Each image in the dataset is accompanied by pixel-perfect
labels for standard annotations like 2D keypoints, as well as
more complex annotations such as depth and occlusions.

The dataset provides comprehensive annotations for
each scene, including RGB images, semantic segmenta-
tions, instance segmentations, and 32-bit, unnormalized
depth maps. For every avatar, there are additional labels
and metadata, including 2D keypoints in standard COCO
format, 3D keypoints, polygon segmentation in standard
COCO format, bounding box in standard COCO format,
and several other features. We utilized the labeled 2D key-
point data as an additional feature for our model, beyond
the RGB images themselves.

Before training our model, we performed several pre-
processing steps on the dataset. We split the dataset into
a training set of 50,000 images and a test set of 10,000 im-
ages.

3In the paper Weitz et al show that there is minimal bias in their gener-
ated dataset.

For each image, we applied a series of transformations.
The images were resized to a standard size of 224x224
pixels and then converted to tensors. Finally, we normal-
ized the images with mean and standard deviation values
of [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respec-
tively, to match the normalization parameters of the pre-
trained ResNet-50 model we used.

To ensure the efficient use of computational resources,
we grouped the images into batches of 64. This batching
facilitates faster training times by enabling the simultaneous
processing of multiple images.

(a) RBG image

(b) RBG Image + Keypoints

Figure 1. Sample Data

5. Experiments, Results, & Discussion

In this section, we highlight the hyperparamters we used
for our models, and the rationale behind the choices. More-
over, we present the metrics we used to assess our methods.
These help form the results of the paper, which we present
via various graphs and tables. Lastly, we discuss our results.

5.1. Hyperparameters

We utilized the Adam optimizer’s default learning rate,
which is 0.001. Adam is a popular choice for deep learning
tasks due to its leveraging of momentum and an adaptive
learning rate, as well as its ability to handle sparse gradients
and noisy data, which is why it was selected [8]. Addition-
ally, the batch size was set to 64, as it offers a good bal-
ance between memory usage and computational efficiency.
Smaller batch sizes can provide more frequent updates, but
they may also be noisier, while larger batches offer more
stable but less frequent updates*. We used the StepLR learn-
ing rate scheduler to decrease the learning rate by a factor
of 0.01 every seven epochs. This combination of learning
rate and batch size has been shown to be effective in training
CNN s to help the optimizer converge to the optimal solution
more quickly and accurately [12]. We trained our model for
10 epochs because that balanced model learning and train-
ing time, which was important given the large amount of
models we were training.

Moreover, We experimented with freezing and unfreez-
ing of the final layer of ResNet-50 because it is common

4 Additional research adds insight on large batch sizes [7]

practice in transfer learning [4]. By unfreezing the last layer
of ResNet50, we allowed the model to adapt more flexibly
to the specific task at hand, while still benefiting from the
pre-trained weights of the earlier layers which could already
capture lower-level details that are useful for our specific
task too.

Additionally, we used different model architectures such
as a simple linear classification head and more complex
non-linear classification heads which help to capture more
complex relationships in the data®. For example, in our 2-
linear-layer non-linear classification head, we introduced a
linear layer followed by a ReLU activation function that
was then followed by a dropout layer and another linear
layer. The ReLU function introduces non-linearity into the
model, enabling it to learn more complex mappings from
the inputs [1]. The dropout layer with a rate of 0.5 is used
to prevent overfitting by randomly setting half of the input
units to 0 during training, which helps to prevent the model
from relying too heavily on any single input or becoming
too complex. The rate of 0.5 is commonly used and rec-
ommended in the literature, for example, in Geoffrey Hin-
ton’s work [13]. Dropout was introduced in models 5 and
6 (those that used non-linear classification heads) to pre-
vent the overfitting that is often associated with more robust
models.

5.2. Metrics

To evaluate the performance of both our method and the
baselines we utilize loss and accuracy metrics. To compute
loss we use cross-entropy loss or softmax.

n
Lep = — Yt log(p;), for n classes)
i=1

To compute the model’s classification accuracy, we iterate
through each batch and calculate the proportion of images
where the predicted pose category matches the actual pose
category. We sum these proportions and divide by the num-
ber of images to get the training accuracy for an epoch.

Number of Correct Predictions

Accuracy =

2

Total Number of Predictions
5.3. Results

We show the accuracy and loss for all are models in the
tables 1 and 2. Moreover, for our best performing model
[Model 4: ResNet (Unfrozen Final Layer) + Keypoints +
Linear Layer], we plot loss and accuracy over time (10
epochs) in figures 2a and 2b. Additionally, we provide
a confusion matrix for this model to show class by class
predictions in figure 3. Furthermore, again for model 4,

SWe use 512 and 256 units for fully connected layers since they are
both powers of two (common practice) and reflect the balance between
computational efficiency and task complexity

in figures 4a, 5a, 4b and 5b we display saliency maps to
visualize which parts of an input image contribute most
to the model’s output. The saliency map was created by
computing the gradient of the output with respect to the
input image. The larger the absolute value of the gradient
at a certain pixel, the more “saliency” or importance the
model assigns to that pixel. We present two examples
of saliency maps, one in which our classifier is correct
and another where the pose category was misclassified,
alongside the original images they were produced from.

Table 1. Model Loss Comparison

Model Train Test

Baseline (Pre-Trained Res-Net50) 2.7185 | 2.7207
Model 1: ResNet (Frozen) + Linear Layer 2.0516 | 2.7342
Model 2: ResNet (Unfrozen Final Layer) + Linear Layer 0.0110 | 2.5679
Model 3: ResNet (Frozen) + Keypoints + Linear Layer 0.1155 | 1.1266
Model 4: ResNet (Unfrozen Final Layer) + Keypoints + Linear Layer 0.1165 | 0.1462
Model 5: ResNet (Unfrozen Final Layer) + Keypoints + 2 Linear Layers + ReLU/Dropout | 0.8509 | 0.9214
Model 6: ResNet (Unfrozen Final Layer) + Keypoints + 3 Linear Layers + ReLU/Dropout | 1.1333 | 0.8190

Table 2. Model Accuracy Comparison

Model Train Test

Baseline (Pre-Trained Res-Net50) 6.98% 6.90%
Model 1: ResNet (Frozen) + Linear Layer 3591% | 19.30%
Model 2: ResNet (Unfrozen Final Layer) + Linear Layer 99.80% | 31.98%
Model 3: ResNet (Frozen) + Keypoints + Linear Layer 97.58% | 59.00%
Model 4: ResNet (Unfrozen Final Layer) + Keypoints + Linear Layer 97.45% | 96.55%
Model 5: ResNet (Unfrozen Final Layer) + Keypoints + 2 Linear Layers + ReLU/Dropout | 66.90% | 64.50%
Model 6: ResNet (Unfrozen Final Layer) + Keypoints + 3 Linear Layers + ReLU/Dropout | 58.80% | 79.31%

We have bolded model 4 to show that it is our best model
in terms of test accuracy and loss.

Train and Test Loss

— Tain Loss
— estioss

] 3 i 3 3 T
Epochs

(a) Loss over Epochs

Train and Test Accuracy.

3 7 T I3 s T
Epochs

(b) Accuracy over Epochs

Figure 2. 1FC + keypoints

This plot highlights that the models accuracy increases
and the loss decreases over training time. This served as a
good indication that our model was predicting well during
training and showed improvements as compared to previous
models.

Confusion Matrix at Epoch 10

600

-500

-400

True Label

-300

100

Predicted Label

Figure 3. Confusion matrix

Our confusion matrix displays a class by class break-
down of correct and incorrect predictions as compared to
the ground truth labels. This shows that warrior 2 and bi-
cep curls caused the most confusion for our network, con-
sequently causing the most errors.

(a) RGB Image

(b) Saliency Map

Figure 4. Correctly Classified Image (Class 4 - Downward Dog)

(a) RGB Image (b) Saliency Map

Figure 5. Incorrectly Classified Image (Correct Warrior 2, Pre-
dicted Lunge)

In figure 4b we see that the saliency map correctly out-
lines the person in the downwards dog position as there is a

clear V shape on the left side of the map. Additionally, we
see that the area with the most bright read is on the shadow
of the figure, potentially highlighting the fact that our model
learned from these as well. In figure 5b, our model gets dis-
tracted by the patterns on the ground in the background of
the image. We can see this by noticing that the most red
areas are following the lined patterns on the ground. This is
what likely caused our model to inccorect predict the pose.

5.4. Experiments and Discussion

We noticed that our baseline model utilizing the pre-
trained ResNet-50 weights performed roughly similar to
random guessing. This was because the linear layer was
randomly initialized and no training was performed, so the
output of the layer was essentially nothing more than ran-
dom matrix multiplications.

As for our models, we had three key findings: 1) Adding
in keypoints did indeed greatly increase the performance
of our models, suggesting that the spatial information they
provide was significantly helpful for our model when de-
terming pose class, 2) Unfreezing the last linear layer
of ResNet-50 also significantly helped our model perfor-
mance, indicating that this delicate unfreezing of a sin-
gle layer had tremendous impacts on the model’s ability to
adapt to our specific task, and 3) Despite what we believed,
adding non-linear classification heads did not improve per-
formance and were outperformed by a linear classification
head, at least across the 10 epochs that we ran.

For key finding 1, we see this evidenced by the increase
in performance from Model 1 (19.30% Test Accuracy) to
Model 3 (59.00% Test Accuracy) and by the increase in per-
formance from Model 2 (31.98% Test Accuracy) to Model 4
(96.55% Test Accuracy). These models were both the same
architecturally, only differing by the addition of keypoints.
The substantial difference in test accuracy shows the use-
fulness of keypoints in a fitness pose estimation setting.

For key finding 2, we see this evidenced by the increase
in performance from Model 1 (19.30% Test Accuracy) to
Model 2 (31.98% Test Accuracy) and by the increase in per-
formance from Model 3 (59.00% Test Accuracy) to Model
4 (96.55% Test Accuracy). Again, both of these increases
are substantial. We can attribute this change due to the fact
that our model was more robust and was able to take ad-
vantage of adjusting more weights during fine-tuning, al-
lowing earlier frozen layers to capture general low-level
(like edges, colors, shapes) details while the last unfrozen
layer was able to be fine-tuned to the specific task at hand.
In other words, the last layer, when unfrozen, can special-
ize on the specifics of our task, thus improving accuracy.
Since ResNet-50 is good for image classification, but not
specifically for fitness poses (with neither just one nor mul-
tiple people), this helped significantly with allowing the pre-
trained network’s weights to be properly applied and lever-

aged. This shows the importance of adjusting pre-trained
model weights when fine-tuning in the fitness pose estima-
tion setting.

For key finding 3, we see this evidenced by model 4’s
significantly better performance (96.55% Test Accuracy)
compared to model 5 (64.50% Test Accuracy) and model
6 (79.31% Test Accuracy). Model 4 is the same as model
5 and 6, except for the fact that it uses a linear classifica-
tion head while models 5 and 6 use non-linear classification
heads. Despite what we believed would occur, model 4 out-
performed the models that were more robust and complex.
This could partially be due to it being less likely to overfit
(we saw some overfitting in model 5 and in earlier mod-
els where training accuracy was better than test accuracy)
or due to linear classification heads simply performing bet-
ter for the fitness pose estimation task. However, it is also
likely that models 5 and 6, being as complex as they were,
weren’t able to fully tune their many additional parameters
in only 10 epochs. The relatively simpler model 4 could
have been able to achieve closer to its maximum potential
within 10 epochs since it has less parameters that therefore
interact with each other in less complex ways that can be
learned in a shorter period of “time” (epochs).

Taking a step back and looking at our results beyond
these three key findings, model 4: ResNet (Unfrozen Final
Layer) + Keypoints + Linear Layer performed best by far,
achieving a 96.55% test accuracy. It was also apparent that
our model drastically overfit our data for models 1,2, and
3. This is clear because the accuracy was much higher for
train than test. Also, the loss was much lower for train than
test. Models 5 and 6 model combatted this overfitting issue
by adding dropout. Notably, the 4th method does not use
dropout, but does not demonstrate the same level of sever-
ity with the overfitting issue (it has only a slightly higher
training accuracy at 97.45% than its 96.55% test accuracy),
likely because the performance is so high that this discrep-
ancy can’t be large and it’s capable of learning effective,
generalizable features.

6. Conclusion

This paper demonstrates the effectiveness of integrating
body keypoints features, unfreezing fully connected layers,
and linear classification heads when fine-tuning ResNet-50
on the fitness pose classification task. Our exploration be-
gan with a baseline model leveraging pre-trained ResNet-
50 weights, which showed a performance no better than
random guessing due to the lack of initial training on our
dataset. We were able to far surpass this baseline with ev-
ery additional model we trained, demonstrating the learning
capabilities of neural networks on the fitness pose classifi-
cation task.

Significant performance improvement was observed
when keypoints were incorporated into the model, suggest-

ing that spatial information provided by these keypoints is
crucial for the task of fitness pose classification. Moreover,
unfreezing the last linear layer of the ResNet-50 model re-
sulted in a substantial increase in accuracy, underlining the
benefits of selective layer unfreezing when fine-tuning mod-
els for specific tasks. Notably, Model 4: ResNet (Unfrozen
Final Layer) + Keypoints + Linear Layer performed the
best.

Contrary to our expectations, the addition of non-linear
classification heads did not enhance the performance. In-
stead, a simple linear classification head outperformed the
more complex non-linear models, possibly due to it be-
ing less prone to overfitting, or perhaps because the more
complex models could not fully optimize their parameters
within the limited training epochs we employed.

Our research illustrates that it is possible to significantly
enhance fitness pose classification by strategically adapting
pre-existing models and by effectively integrating spatial
data from pose keypoints. However, this study also raises
intriguing questions about the most effective model com-
plexity and the benefits of nonlinear classifiers in such tasks,
which warrants further investigation.

Given more time and resources, future studies could aim
to experiment with larger, more diverse datasets and explore
more complex model architectures trained on more epochs.
This could also include a deeper analysis of the impact
of non-linear activation functions in the classification layer
and the effects of a more comprehensive training regime,
potentially uncovering further areas for improvement in this
essential domain. Additionally, more data could be fed to
the model, like segmentation masks. Lastly, fine-tuning hy-
perparameters, such as experimenting with unfreezing vari-
ous layers or combinations of layers in ResNet-50, and ad-
justing dropout rates, could present intriguing avenues for
exploration in future research.

7. Contributions & Acknowledgements

We both evenly distributed the work for fine-tuning and
training our various models via pair programming. Ad-
ditionally, we worked together to complete our proposal,
milestone, and research paper, with both team members
editing and writing portions of each section. A central piece
of our research could not be made possible without ResNet
and the research from He et al. [6]. Thanks to Weitz et
al. [14] for the free and comprehensive dataset without this
we could not train our image classifier. Pytorch documenta-
tion was useful for loading the ResNet-50 model which can
be found here.

References

[1] Abien Fred Agarap. Deep learning using rectified linear units
(relu). CoRR, abs/1803.08375, 2018. 5

[2

—

3

—

[4

—

(5

—

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

[12]

(13]

(14]

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and
Yaser Sheikh. Openpose: Realtime multi-person 2d pose
estimation using part affinity fields, 2019. 2

Matthew Chen and Melvin Low. Recurrent human pose es-
timation. 2016. 2

Alexandra Chronopoulou, Christos Baziotis, and Alexan-
dros Potamianos. An embarrassingly simple approach for
transfer learning from pretrained language models. CoRR,
abs/1902.10547, 2019. 5

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 1,2, 8
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima, 2017. 5

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 4, 5

Shruti Kothari. Yoga pose classification using deep learning,
2020. 2

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In F Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 1097-1105. Curran Associates,
Inc., 2012. 2

Siddharth Mahendran, Haider Ali, and Rene Vidal. 3d pose
regression using convolutional neural networks, 2017. 2
Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Sys-
tematic evaluation of convolution neural network advances
on the imagenet. Computer Vision and Image Understand-
ing, 161:11-19, aug 2017. 5

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929-1958, 2014. 2, 5
Andrew Weitz, Lina Colucci, Sidney Primas, and Brinnae
Bent. Infiniteform: A synthetic, minimal bias dataset for
fitness applications. CoRR, abs/2110.01330, 2021. 4, 8

https://pytorch.org/vision/stable/models.html

	. Introduction
	. Baseline

	. Related Works
	. OpenPose
	. Recurrent Pose Classification
	. 3D Pose Classification

	. Methods
	. Methods
	. Data pipeline
	. Additional Shared Model Details

	. Dataset and Features
	. Experiments, Results, & Discussion
	. Hyperparameters
	. Metrics
	. Results
	. Experiments and Discussion

	. Conclusion
	. Contributions & Acknowledgements

